Stretched, ordered DNA molecules could bring insights into disease

Fluorescence micrographs of elongated DNA molecules are shown here. The first ro
Fluorescence micrographs of elongated DNA molecules are shown here. The first row is nonmethylated DNA; the second is methylated DNA; and the third is a mixture of both. The first and second columns are images taken at different wavelengths. The third column is a composite false-color overlay of the first two columns.
Studying chemical modifications in the chromosomes of cells is akin to searching for changes in coiled spaghetti. Scientists at Cornell have figured out how to stretch out tangled strands of DNA from chromosomes, line them up and tag them to reflect different levels of modification - which could lead to insights into how these chemical processes affect human health. Researchers in the lab of Harold Craighead, the Charles W. Lake Professor of Engineering, used advanced nanofabrication techniques to make it easier to see how single molecules of DNA subtly change during a chemical process called methylation. A better understanding of this process could lead to further study into genetic machinery of numerous diseases, including Alzheimer's, Parkinson's, diabetes and cancer. This work was published online Oct. 7 in the journal Analytical Chemistry. DNA is normally packed tightly into the nucleus of a cell and housed into chromosomes.
account creation

TO READ THIS ARTICLE, CREATE YOUR ACCOUNT

And extend your reading, free of charge and with no commitment.



Your Benefits

  • Access to all content
  • Receive newsmails for news and jobs
  • Post ads

myScience