Princeton University-led researchers report that the total deforestation of the Amazon may significantly reduce rain and snowfall in the western United States, including a 50 percent reduction in the Sierra Nevada snowpack that is a crucial source of water for cities and farms in California. The simulation showed that the water equivalent of the snowpack by April 1 decreased in range and depth from pre-deforestation levels (left) when the Amazon was cleared (right). The depth is measured in centimeters with the redder areas indicating more snow. (All images by David Medvigy, Department of Geosciences)
If a tree falls in Brazil..' Amazon deforestation could mean droughts for western U.S. Posted November 7, 2013; 10:00 a.m. by Morgan Kelly, Office of In research meant to highlight how the destruction of the Amazon rainforest could affect climate elsewhere, Princeton University-led researchers report that the total deforestation of the Amazon may significantly reduce rain and snowfall in the western United States, resulting in water and food shortages, and a greater risk of forest fires. The researchers report in the Journal of Climate that an Amazon stripped bare could mean 20 percent less rain for the coastal Northwest and a 50 percent reduction in the Sierra Nevada snowpack, a crucial source of water for cities and farms in California. Previous research has shown that deforestation will likely produce dry air over the Amazon. Using high-resolution climate simulations, the researchers are the first to find that the atmosphere's normal weather-moving mechanics would create a ripple effect that would move that dry air directly over the western United States from December to February. Specifically, a denuded Amazon would develop a weather cycle consisting of abnormally dry air in the sun-scorched northern Amazon around the equator weighted by wetter air in the cooler south. Research has speculated that this pattern would be similar to the warm-water climate pattern El Niño, which during the winter months brings heavy precipitation to southern California and the Sierra Nevada region while drying out the Pacific Northwest.
TO READ THIS ARTICLE, CREATE YOUR ACCOUNT
And extend your reading, free of charge and with no commitment.