Genome Research Challenges Previous Understanding of the Origin of Photosynthesis

Colorful chloroflexi-rich microbial mats grow in a Japanese onsen (hot-spring ba
Colorful chloroflexi-rich microbial mats grow in a Japanese onsen (hot-spring bath). Supposedly billions of years old, these photosynthetic bacteria actually evolved just 867 million years ago, according to the study’s co-first author Caltech’s Woodward Fischer. (Credit: Lewis Ward, Caltech)
Written by Leah Sloan Plant biologists at Lawrence Berkeley National Laboratory (Berkeley Lab), in collaboration with colleagues from the California Institute of Technology (Caltech), have reconstructed the evolutionary history of photosynthesis to provide new insight into the yet-unfolding story of its origins. The most commonly studied form of photosynthesis is oxygenic photosynthesis, the method through which plants use sunlight to convert water to oxygen. However, further studies of anoxygenic photosynthesis, which does not produce oxygen, are crucial to understanding how early microbial metabolisms may have influenced the geochemical cycles of the planet. "Photosynthesis supports the majority of life on our planet; however, we know very little about when this important metabolism evolved," explained Patrick Shih, a postdoctoral researcher in Berkeley Lab's Environmental Genomics and Systems Biology Division and co-first author of a recent study in the Proceedings of the National Academy of Sciences titled, " Evolution of the 3-hydroxypropionate bicycle and recent transfer of anoxygenic photosynthesis into the Chloroflexi." Woodward Fischer, professor of geobiology at Caltech, is also co-first author of the study. It is thought that anoxygenic photosynthesis evolved before oxygenic photosynthesis, playing a role in some of the earliest evidence for life on Earth, before the rise of atmospheric oxygen. "It has been widely speculated that a special group of bacteria called Chloroflexi were the inventors of anoxygenic photosynthesis," Shih said.
account creation

TO READ THIS ARTICLE, CREATE YOUR ACCOUNT

And extend your reading, free of charge and with no commitment.



Your Benefits

  • Access to all content
  • Receive newsmails for news and jobs
  • Post ads

myScience