How human sperm really swim: research challenges centuries-old assumption

The sperm tail moves very rapidly in 3D, not from side-to-side in 2D as it was b

The sperm tail moves very rapidly in 3D, not from side-to-side in 2D as it was believed. polymaths-lab.com

A breakthrough in fertility science by researchers from Bristol and Mexico has shattered the universally accepted view of how sperm ’swim’.

“However, our discovery shows sperm have developed a swimming technique to compensate for their lop-sidedness and in doing so have ingeniously solved a mathematical puzzle at a microscopic scale: by creating symmetry out of asymmetry,” said Dr Gadelha.

“The otter-like spinning of human sperm is however complex: the sperm head spins at the same time that the sperm tail rotates around the swimming direction. This is known in physics as precession, much like when the orbits of Earth and Mars precess around the sun.”

Computer-assisted semen analysis systems in use today, both in clinics and for research, still use 2D views to look at sperm movement. Therefore, like Leeuwenhoek’s first microscope, they are still prone to this illusion of symmetry while assessing semen quality. This discovery, with its novel use of 3D microscope technology combined with mathematics, may provide fresh hope for unlocking the secrets of human reproduction.

“With over half of infertility caused by male factors, understanding the human sperm tail is fundamental to developing future diagnostic tools to identify unhealthy sperm,” adds Dr Gadelha, whose work has previously revealed the biomechanics of sperm bendiness and the precise rhythmic tendencies that characterise how a sperm moves forward.

Dr Corkidi and Dr Darszon pioneered the 3D microscopy for sperm swimming.

“This was an incredible surprise, and we believe our state-of the-art 3D microscope will unveil many more hidden secrets in nature. One day this technology will become available to clinical centres,” said Dr Corkidi.

“This discovery will revolutionize our understanding of sperm motility and its impact on natural fertilization. So little is known about the intricate environment inside the female reproductive tract and how sperm swimming impinge on fertilization. These new tools open our eyes to the amazing capabilities sperm have,” said Dr Darszon.

Paper

’Human sperm uses asymmetric and anisotropic flagellar controls to regulate swimming symmetry and cell steering’ by Hermes Adelha et al in Science Advances.


This site uses cookies and analysis tools to improve the usability of the site. More information. |