Smaller animals faced surprisingly long odds in ancient oceans, Stanford study finds

Giant clams, the largest type of invertebrate included in the study, survive today on tropical reefs in the Pacific and Indian Oceans, but many species from this group are under threat. "People collect them to carve the shells, as with elephant ivory, and to eat the clam because of its supposedly aphrodisiac-like properties," says paleobiologist Noel Heim. (Photo credit: iStock)

New fossil research shows extinction for smaller marine animals across most of the past 485 million years was more common than once believed. Why?

A new fossil study from Stanford University shows extinction was unexpectedly common among smaller sea creatures in the deep past.

The research, published Jan. 30 in the journal Paleobiology, suggests evolutionary winners during most of the history of animal life included not only true behemoths of the sea, such as Jurassic fish as long as a bus, but also species who were giants of their kind.

"Our study shows there are macroevolutionary forces that tend to favor the survival of larger species," said Noel Heim, a paleobiologist at Tufts University who worked on the analysis as a researcher in the lab of Stanford geological sciences professor Jonathan Payne.

The findings contrast with extinction patterns observed on land and in today’s oceans. "Our findings suggest that the controls on extinction risk for marine animals across evolutionary time were quite different from those that are operating in the current extinction crisis, but were consistent across time and distantly related groups of animals," Payne said.

Disproportionate losses

Scientists have long debated how and why animal size and extinction risk were related in the deep past, often forming theories based on examples from land-based ecosystems. Payne has studied the question from different angles for more than a decade, mostly focusing on the marine environment. His teams have demonstrated that the  size bias of extinction threats   in modern oceans does not exist in the pattern of extinction of fossil marine mollusks and fishes spanning the past 66 million years, and that marine animals  evolved toward larger sizes over the past 500 million years.

The new study examines a far broader swath of the tree of life, from huge bony fish and giant clams down to crustaceans and sea snails tinier than poppy seeds. Payne and Heim conducted a statistical analysis of 251,124 fossil records, including creatures belonging to 9,408 groupings known as "genera," one taxonomic level higher than species. They chose the largest specimen in each of these genera to represent its kind. Then they analyzed extinction and survival patterns for three long chunks of time between 485 million years ago and the present day.

"People might think paleontology looks like a rugged outdoors person battling the wilderness to extract fossils from the Earth," Heim said. "In our case, we went to the library to extract data then wrote computer code to analyze it."

They found disproportionate losses among smaller creatures, such as those belonging to a group of bivalves known as Pectinida. The smallest of these distant sea-scallop relatives, pancake-thin and narrower than the palm of your hand, perished in the later years of the Cretaceous period, which ended when a dinosaur-killing asteroid crashed to Earth 65 million years ago. Related scallop-like species whose bodies could grow to more than twice that width and 10 times the volume, survived.

Filling in the gaps

The study also addresses nagging concerns that perhaps scientists until now have counted fossils in a way that makes smaller species appear to be rarer and more extinction-prone than they really were; or that perhaps body size has been far less important for survival than range, which happens to be bigger for bigger animals.

Paleontologists know that the fossil record has problematic gaps when it comes to smaller species - due partly to the allure of big fossils, and partly to the technical challenge of tracking down evidence of the ocean’s smallest animals millions of years after they perished. 

"Their shells tend to be destroyed prior to burial and fossilization," Payne explained. "Even if preserved in rocks, smaller shells are often more difficult to see in the field and require greater skill and precision to prepare them in ways that enable identification." 

The study confirmed that larger genera do tend to have broader geographic range, and that better techniques for preparing and magnifying small fossils have allowed scientists to begin filling in gaps where smaller species remain underrepresented. Yet neither of these facts accounts statistically for the bias in extinction against smaller animals evident in every era over the past 485 million years.

"The biggest surprises for me were finding that neither poor sampling nor narrower geographic ranges of smaller genera explained the statistical association of body size with extinction risk," Payne said. 

Biodiversity crisis

The precise processes underlying the pattern of higher extinction risks for smaller ocean animals remains unclear. Yet its existence underlines the extraordinary nature of threats facing ocean animals today. So many species are now in peril that scientists warn losses may reach the scale of a mass extinction - only the sixth in nearly half a billion years.

It’s a crisis that fuels efforts by Payne’s team and others to identify what drives extinction risk, and somehow quantify how species died off in the deep past.

"The fossil record is our only archive of past extinction events," Payne said. It allows researchers to examine directly which biological traits tend to lead to higher extinction risk under different circumstances, whether in the wake of an asteroid impact or volcanic eruption, or amid global warming. 

Just as valuable are the insights scientists can glean from fossils about long-term recovery. "The bad news is that recovery is a slow process, taking hundreds of thousands to millions of years," Payne said. "This finding adds substantial urgency to our efforts to conserve species and ecosystems before extinction occurs."

Animals tend to evolve toward larger sizes over time Stanford research shows that animals tend to evolve toward larger body sizes over time. Over the past 542 million years, the mean size of marine animals has increased 150-fold. Why are whales so big?

Examining body sizes of ancient and modern aquatic mammals and their terrestrial counterparts reveals that life in water restricts mammals to a narrow range of body sizes - big enough to stay warm, but not so big they can’t find enough food. Larger marine animals at higher risk of extinction, and humans are to blame In today’s oceans, larger-bodied marine animals are more likely to become extinct than smaller creatures. It’s a pattern that is unprecedented in the history of life on Earth, and one that is likely driven by human fishing. What caused Earth’s biggest mass extinction?

Scientists have debated until now what made Earth’s oceans so inhospitable to life that some 96 percent of marine species died off at the end of the Permian period. New research shows the "Great Dying" was caused by global warming that left ocean animals unable to breathe.

Jonathan Payne is Senior Associate Dean for Faculty Affairs and Professor of Geological Sciences at Stanford’s  School of Earth, Energy & Environmental Sciences   (Stanford Earth) and, by courtesy, of Biology.

Josie Garthwaite
School of Earth, Energy & Environmental Sciences
(650) 497-0947, josieg [at] stanford (p) edu   Jonathan Payne
School of Earth, Energy & Environmental Sciences
jlpayne [at] stanford (p) edu

New research using data from NASA’s Spitzer Space Telescope has provided a rare glimpse at the surface of a rocky planet outside our solar system. The planet may be similar to Mercury or Earth’s moon, with little to no atmosphere.

Genetic material left behind by animals can provide critical clues to aid conservation and research. New research shows studying DNA in soil samples can be more effective, efficient and affordable than traditional tracking methods, such as camera traps, for assessing biodiversity.

When significant oxygen entered the atmosphere, ancient life multiplied. But after a few hundred million years, Earth’s oxygen plummeted, resulting in a die-off likely greater than the extinction of the dinosaurs.

Faculty at Stanford’s School of Earth, Energy & Environmental Sciences recommend these 22 books for your summer reading.


This site uses cookies and analysis tools to improve the usability of the site. More information. |