Energy-efficient computing with tiny magnetic vortices

A magnetic vortex, known as a skyrmion (grey dot), being displaced into the corn
A magnetic vortex, known as a skyrmion (grey dot), being displaced into the corners of a triangular field by electrical currents, where it bounces off the sides. The potentials shown in red are sufficient for carrying out Boolean logic operations.
Unconventional computing combines Brownian computing with reservoir computing / First prototype developed. A magnetic vortex, known as a skyrmion (grey dot), being displaced into the corners of a triangular field by electrical currents, where it bounces off the sides. The potentials shown in red are sufficient for carrying out Boolean logic operations. A large percentage of energy used today is consumed in the form of electrical power for processing and storing data and for running the relevant terminal equipment and devices. According to predictions, the level of energy used for these purposes will increase even further in the future. Innovative concepts, such as neuromorphic computing, employ energy-saving approaches to solve this problem. In a joint project undertaken by experimental and theoretical physicists at Johannes Gutenberg University Mainz (JGU) with the funding of an ERC Synergy Grant such an approach, known as Brownian reservoir computing, has now been realized.
account creation

TO READ THIS ARTICLE, CREATE YOUR ACCOUNT

And extend your reading, free of charge and with no commitment.



Your Benefits

  • Access to all content
  • Receive newsmails for news and jobs
  • Post ads

myScience