National Labs Band Together to Build Prototype Magnet for Future and Existing Light Sources

This half-meter-long prototype of a niobium-tin superconducting undulator magnet

This half-meter-long prototype of a niobium-tin superconducting undulator magnet was designed and built by a team from the U.S. Department of Energy’s Lawrence Berkeley, Argonne, and Fermi national laboratories. The next step will be to build a meter-long version and install it at the Advanced Photon Source at Argonne National Laboratory. (Credit: Ibrahim Kesgin/Argonne National Laboratory)

Note: This release was adapted from the original press release, prepared by Argonne National Laboratory.

With a powerful enough light, you can see things that people once thought would be impossible. Large-scale light source facilities generate that powerful light, and scientists use it to create more durable materials, build more efficient batteries and computers, and learn more about the natural world.

When it comes to building these massive facilities, space is money. If you can get higher-energy beams of light out of smaller devices, you can save millions on construction costs. Add to that the chance to significantly improve the capabilities of existing light sources, and you have the motivation behind a project that has brought scientists at the U.S. Department of Energy ( DOE )’s Argonne, Lawrence Berkeley (Berkeley Lab), and Fermi national laboratories together.

This team has just achieved an important milestone that has been in the works for more than  15  years: they have designed, built and fully tested a new state-of-the-art half-meter-long prototype magnet that meets the requirements for use in existing and future light source facilities.

The next step, according to Efim Gluskin, a distinguished fellow at  DOE ’s Argonne National Laboratory (Argonne), is to scale this prototype up, build one that is more than a meter long and install it at the Advanced Photon Source ( APS ), a  DOE  Office of Science User Facility at Argonne. But while these magnets will be compatible with light sources like the  APS , the real investment here, he said, is in the next generation of facilities that have not yet been built.

" The real scale of this technology is for future free-electron laser facilities," Gluskin said.  " If you reduce the size of the device, you reduce the size of the tunnel, and if you can do that you can save tens of millions of dollars. That makes a huge difference."

That long-term goal brought Gluskin and his Argonne colleagues into collaboration with scientists from Berkeley Lab and Fermi National Accelerator Laboratory (Fermilab). Each lab has been pursuing superconducting technology for decades, and has in recent years focused research and development efforts on an alloy that combines niobium with tin.

This material remains in a superconducting state - meaning it offers no resistance to the current running through it - even as it generates high magnetic fields, which makes it perfect for building what are called undulator magnets. Light sources like the  APS  generate beams of photons (particles of light) by siphoning off the energy given off by electrons as they circulate inside a storage ring. The undulator magnets are the devices that convert that energy to light, and the higher a magnetic field you can generate with them, the more photons you can create from the same size device.

There are a few superconducting undulator magnets installed at the  APS  now, but they are made of a niobium-titanium alloy, which for decades has been the standard. According to Soren Prestemon, senior scientist at Berkeley Lab, niobium-titanium superconductors are good for lower magnetic fields - they stop being superconducting at around  10  Tesla. (That’s about  8 , 000  times stronger than your typical refrigerator magnet.)

" Niobium- 3  tin is more complicated material," Prestemon said,  " but it is capable of transporting current at a higher field. It is superconductive up to  23  Tesla, and at lower fields it can carry three times the current as niobium-titanium. These magnets are kept cold at  4 . 2  Kelvin, which is about – 450  degrees Fahrenheit, to keep them superconducting."

Prestemon has been at the forefront of Berkeley’s niobium- 3  tin research program, which began back in the  1980 s. The new design developed at Argonne built off of the previous work of Prestemon and his colleagues.

" This is the first niobium- 3  tin undulator that has both met the design current specifications and been fully tested in terms of magnetic field quality for beam transport," he said.

Fermilab started working with this material in the  1990 s, according to Sasha Zlobin, who initiated and led the niobium- 3  tin magnet program there. Fermilab’s niobium- 3  tin program has centered on superconducting magnets for particle accelerators, like the Large Hadron Collider at  CERN  in Switzerland and the upcoming  PIP-II  linear accelerator, to be built on the Fermilab site.

" We’ve demonstrated success with our high-field niobium- 3  tin magnets," Zlobin said.  " We can apply that knowledge to superconducting undulators based on this superconductor."

Part of the process, according to the team, has been learning how to avoid premature quenches in the magnets as they approach the desired level of magnetic field. When the magnets lose their ability to conduct current without resistance, the resulting backlash is called a quench, and it eliminates the magnetic field and can damage the magnet itself.

The team will report in  IEEE  Transactions on Applied Superconductivity that their new device accommodates nearly twice the amount of current with a higher magnetic field than the niobium-titanium superconducting undulators currently in place at the  APS.

The project drew on Argonne’s experience building and operating superconducting undulators and Berkeley and Fermilab’s knowledge of niobium- 3  tin. Fermilab helped to guide the process, advising on the selection of superconducting wire and sharing recent developments in their technology. Berkeley designed a state-of-the-art system that uses advanced computing techniques to detect quenches and protect the magnet.

At Argonne, the prototype was designed, fabricated, assembled and tested by a group of engineers and technicians under the guidance of Project Manager Ibrahim Kesgin, with contributions in the design, construction and testing by members of the  APS  superconducting undulator team led by Yury Ivanyushenkov.

Co-authors on the paper include Matt Kasa, Steve MacDonald and Quentin Hasse from Argonne; Emanuela Barzi and Daniele Turrioni from Fermilab; and Diego Arbelaez from Berkeley Lab.

The research team plans to install their full-sized prototype, which should be finished next year, at Sector  1  of the  APS , which makes use of higher-energy photon beams to peer through thicker samples of material. This will be a proving ground for the device, showing that it can operate at design specifications in a working light source. But the eye, Gluskin says, is on transferring both technologies, niobium titanium and niobium- 3  tin, to industrial partners and manufacturing these devices for future high-energy light source facilities.

" The key has been steady and persistent work, supported by the labs and  DOE  research and development funds," Gluskin said.  " It has been incremental progress, step by step, to get to this point."

This site uses cookies and analysis tools to improve the usability of the site. More information. |