New biologically derived metal-organic framework mimics DNA

Chemical engineers at EPFL have synthesized a biologically-derived metal-organic framework on which the hydrogen bonding that forms the DNA double helix can be mimicked and studied like never before. The field of materials science has become abuzz with "metal-organic frameworks" (MOFs), versatile compounds made up of metal ions connected to organic ligands, thus forming one-, two-, or three-dimensional structures. There is now an ever-growing list of applications for MOF, including  separating petrochemicals , detoxing water from heavy metals and fluoride anions, and getting  hydrogen  or even  gold  out of it. But recently, scientists have begun making MOFs, made of building blocks that typically make up biomolecules, e.g. amino acids for proteins or nucleic acids for DNA. Apart from the traditional MOF use in chemical catalysis, these biologically derived MOFs can be also used as models for complex biomolecules that are difficult to isolate and study with other means. Now, a team of chemical engineers at EPFL Valais Wallis have synthesized a new biologically-derived MOF that can be used as a "nanoreactor" - a place where tiny, otherwise-inaccessible reactions can take place. Led by Kyriakos Stylianou, scientists from the labs of Berend Smit and Lyndon Emsley constructed and analyzed the new MOF with adenine molecules - one of the four nucleobases that make up DNA and RNA.
account creation

TO READ THIS ARTICLE, CREATE YOUR ACCOUNT

And extend your reading, free of charge and with no commitment.



Your Benefits

  • Access to all content
  • Receive newsmails for news and jobs
  • Post ads

myScience