Formation of Magma Oceans on exoplanet

Development of a magma ocean through induction heating in the mantle of exoplane
Development of a magma ocean through induction heating in the mantle of exoplanet Trappist-1c (Copyright: IWF/ÖAW).
Induction heating can completely change the energy budget of an exoplanet and even melt its interior. In a study published by Nature Astronomy an international team led by the Space Research Institute of the Austrian Academy of Sciences with participation of the University of Vienna explains how magma oceans can form under the surface of exoplanets as a result of induction heating. When a conductive material is embedded in a changing magnetic field, an electrical current is produced inside the body by a process called electromagnetic induction. If the electrical current is strong enough, it can heat the material in which it flows because of electrical resistance. This process called induction heating is widely used in industry to melt materials and at home to cook using induction stoves. Fast rotation causes heating An international team led by the Space Research Institute (IWF) of the Austrian Academy of Sciences (OeAW) with participation of the Department of Astrophysics of the University of Vienna was inspired by these examples. "We wanted to investigate if induction heating can play a role on a much bigger scale", explains first author Kristina Kislyakova. "We were particularly interested in planets orbiting stars that have strong magnetic fields". These stars can rotate very rapidly, which causes the magnetic field at the planet's orbit to change rapidly as well. In such cases, induction heating can take place inside the planet. Impacts on planetary habitability
account creation

TO READ THIS ARTICLE, CREATE YOUR ACCOUNT

And extend your reading, free of charge and with no commitment.



Your Benefits

  • Access to all content
  • Receive newsmails for news and jobs
  • Post ads

myScience